“Don't call us, we’ll call you™”

P. Calafiura
HPCN group Jul 06

Disentangling the Framework

» Heard me talk twice about disentangling
cross-cutting concerns using AOP

—logging, persistence, thread-safety

» Today focus on a sneakier entanglement
iIssue with component frameworks:
application assembly
— separate component configuration/use

— reduce component coupling to framework

The Problem

» Good component architectures use plugins

— run time configuration, coupling via iface

<<iface>> plugin
MovieLister <<uses>> /| = MovieFinder
 z<locates>> %
T Finderimpl

— Issue: how does MovielLister get hold of a

MovieFinder implementation? Can't do

public MovieLister() {
finder = new ColonDelimitedMovieFinder "moviesl.txt");

}

Service Locator

* e.g. Gaudi's

<<interface>>
y ServicelLocator

!

ServiceMgr | -

~

<<creates>>

<<iface>> \
MovieLister <<USes>> = MovieFinder '

J
o

Finderlmpl | ---

// Retrieve the movie finder Tool
s = toolSvc()->retrieveTool(m movieToolType, m movieToolInstanceName, m movieTool);
if (s.isFailure()) {

log << MSG::ERROR << "Could not retrieve " << m movieToolName << " from ToolSvc. "; 2

Service Locator Discussion

» Service Locator leaves responsibility of
assembling the application (creating
components, connecting them) to
component code

* Framework does not know what the
component needs before it can run

» Dynamic, “jit” application assembly

— components created if/when needed

Dependency Injection

» aka “don't call us, we'll call you”

— pioneered by java “lightweight containers”
frameworks (Sprlng picocontainer)

<<declares>> A

ServiceMgr | -

 <<creates>>

<<iface>>
Movielister <<Uses>> = MovieFinder

\
o/
.

Finderimpl | <~ ~

Injection Technigques

Constructor Injection (picocontainer)
e component created in usable state
 readability issues if many interdependencies
* inheritance can get in the way

Setter Injection (Spring)
 easier to read, more flexible, incomplete constructor
Interface Injection (Avalon)

 fwk uses declared injection interfaces to figure out the
dependencies and to inject the correct dependents

-
 remember DO framework? .

Declaring Interdependencies
Component must declare what to inject

Code or configuration files?

* APl is needed for many non-trivial cases
—“I'll need this service but only for simulation jobs”

private MutablePicoContainer configureContainer() {
MutablePicoContainer pico = new DefaultPicoContainer();
Parameter[] finderParams = {new ConstantParameter("moviesl.txt")};
pico.registerComponentImplementation(MovieFinder.class,
ColonMovieFinder.class, finderParams);
pico.registerComponentImplementation(MovielLister.class);

return pico;

Declaring Interdependencies Il
Component must declare what to inject

Code or configuration files?

 Configuration file (XML of course...) promotes a
clearer separation among configuration and use

<beans>
<bean id="MovielLister" class="spring.MovielLister">
<property name="finder">
<ref local="MovieFinder"/>
</property>
</bean>
<bean id="MovieFinder" class="spring.ColonMovieFinder">
<property name="filename">
<value>moviesl.txt</value>
</property>
</bean>

</beans>

The POJO Movement

Reaction to 1% gen java frameworks: EJB
— work with POJQOs (Plain Old Java Obj)

 described to framework by configuration files/API
— one example Hibernate (presented here)
— influenced by AOP and generic programming

— Application assembly only one example of
Cross-cutting concern

* transaction management, persistence, thread-safety

10

What's in it for us dinosaurs?

ATLAS discussing new technigues to locate
components

—currently: . .
y String Properties
// Retrieve the movie finder Tool V
s = toolSvc()->retrieveTool(m movieToolType, m movieToolInstanceName,
m movieTool); :
T - ~ local pointer
tool locator

 client must know how and when to call the locator,
must tell athena when done with tool (nobody does)

 athena does not see the string properties and the
local tool pointer (hence can't release tool) .

Smart Pointer Approach

optional instance

— define python LocatorProperty Finger type name

lister = MovielLister()
lister.finder = ToolLocatorProperty(“ColonDelimitedMovieFinder’, “MyFinder”)

— associate it to local C++ handle in MovieLister

//in .h

LocatorHandle<MovieFinder> m movieTool;
//1n .CXX

declareProperty(“finder”, m movieTool);
// and later

if (m movieTool) m movieTool->find(“Fellini”);

* locator interaction handled by ... the handle
« same goes for tool releasing
 athena knows that MovieLister needs a MovieFinder

12

Injection Approach

— define python LocatorProperty
Finfertype Finfer iface

lister.finder = ToolLocatorProperty(“ColonDelimitedMovieFinder, “MovieFinder”
“MyFinder”, “set finder"”)

\optional callback name
— provide setter callback in MovieLister

void MovielLister::set finder(MovieFinder* theFinder) { m movieTool=theFinder; }

* no locator code in MovieLister

— easier to port to other apps, or to unit-test

* no flow control in MovielLister: athena decides when
to call the setter and when to release the tool

* many strings, more things can go wrong at runtime::

Conclusions
Many ways to skin a cat

— Common goal

 separate configuration of services from their use

— Servicelocator vs Injector

* flexibility vs transparency

— Configuration File vs Injection API
« for athena, python properties are bit of both

— | like Injection because allows framework to see
the information flow into components

14

References

— Martin Fowler Injection paper

* http://www.martinfowler.com/articles/injection.html

— ACM Queue issue on components

 C. Richardson “Untangling Enterprise Java”
ACM Queue, Vol 4 No 5 pp 36-44

15

