
National Energy Research
Scientific Computing Center
(NERSC)

Hephaestus – A Memory Tracker

Wim T.L.P. Lavrijsen
NERSC HENPC, LBNL
LBL Software Meeting - 05/11/06

Context

• Atlas closing in on start-up
– Code to be brought to production quality
• CPU & memory profiling
• Memory leak detection
• Address checking
• Call-graphs understanding
• General debugging

– Constraints
• Atlas software is super-sized
• Many programmers whose codes interact

Current tools (1)

• Valgrind (KDE)
– Emulates CPU execution
• Exhaustive, extensive, detailed
• Memory hungry, and extremely slow

– Since recently, in-process
• Limited execution model, easier to crash

• Oprofile (Levon, Elie / SourceForge)
– Statistics based profiler (reads CPU regs)
– Kernel module (i.e. needs root access)
– Requires debug symbols available

Current tools (2)

• Memprof (RedHat)
– Requires Gnome (GUI), pre-loading
– From FAQ:
Is there any documentation?

Not currently, no. Contributions would be appreciated.

• PerfTools (Google)
– Requires relinking, crash-prone
– Initially not much, but still very active
• Track on-going development

Issues

• Tools written by hackers for hackers
– Use, reports, documentation (if exists)
• Black magic to most of our developers

– Not in line with lxplus reality
• Multi-user, limited resources, CERN IT

– Not in line with Atlas build system
• Re-compilation, re-linking are no-no's

• Atlas software specific issues
– Size; existing sighandlers and preloads

Why do we care?

• User finds GroovyTool on the web
– Reads example: “just press this button”

• Applies tool on Atlas software
– SegFault / bad_alloc / no report

• Starts blaming Athena and/or python
• Bludgeon developer into doing the work
– Little wiser: 100MB report full of LCG

• Repeat process ... per user / per release
– Heavily bottlenecked, wasteful process

To our advantage

• Platform: gcc > v3
– Linux (and MacOS X)
– abi, glibc, gdb, bintils

• Python interpreter loads Athena
– Controlled environment
– A “before” and “after” Athena
• Code before creating ApplicationMgr
• Code after calling Terminate()

– Note: oversimplification (preloads)

MemoryTracker idea

• Use glibc malloc_hooks
– Easy to write if they didn't already exist

• Load memory tracker into python
–Make tracker tuned to Athena needs
• E.g. focus on Algorithms in execute phase

– Settings can be made in job options
• Or, equivalently, on interactive prompt

– Install/uninstall, start/stop of hooks

• Report after Athena Terminate()
– Process still fully alive (if needed)

MemoryTracker

new[] new malloc

realloc

free free
hook

realloc
hook

malloc
hook

Stacktrace st;
If (trace == st[i]):
track ptr;

[malloc_hook();]
If (known(old)):
swap(old, new)

If (known(old)):
stop_track(old)

delete

for all ptrs still tracked:
create unique list
resolve stack trace
if (! filter passed)
continue

print report
at job end

during job

start & stop modes

start & stop modes

start mode only

Technical issues

• STL allocators use mutexes
– Can't use default ones within hooks
– Implement basic malloc allocator
• And code so as to prevent re-entrance

• Stack traces are slow, large in size
– Track addresses instead
– Cache lookups b/c of possible relocation

• Stack may be too deep for filter
– Detect, report, reconfigure (TBD)

Results, example

detected 1367 non-unique leaks in "Algorithm::sysExecute"
...
leak detected, originating in: CaloClusterBuilderSE::CreateImpactInCalo

(Trk::Track const*) (28 bytes)
0x8272ef2 CaloClusterBuilderSE::CreateImpactInCalo(Trk::Track const*)
0x82727e2 CaloClusterBuilderSE::execute(Rec::TrackParticle const*,

EMTrackMatch*)
0x833160a softeBuilder::execute()
0x5e7e41 Algorithm::sysExecute()
0x22af5f AthenaEventLoopMgr::executeAlgorithms()
0x22b3ae AthenaEventLoopMgr::executeEvent(void*)
0x22bd42 AthenaEventLoopMgr::nextEvent(int)
0x11b8c53 MinimalEventLoopMgr::executeRun(int)
...
ignored 210 unique leaks (used 1 filter)

Conclusions

• Tool now in Atlas nightly builds
– Use --leak-check-execute on athena CLI
–Waiting for feedback from developers

• Many leaks detected in reconstruction
– Several of them trivial => proof it works
– Only tool to leak-check full Atlas reco

• Looks successful, mem profile next
– Focussing on Athena initialize()

