
PC AOP 07/18/03

Lightweight AOP in Java

Paolo
July 18, 2003

PC AOP 07/18/03

One Interface
Many Implementations

OOP promotes separation of concerns, each object
is in charge of implementing the interface it
declares.

Common concerns (logging, testing, caching,
persistency) end up scattered across many
classes and often tangled to each other.

Inheritance and delegation alleviate the problem of
cut-and-paste code but create top-heavy code
that is difficult to mantain

Generative programming techniques are a better
tool to add functionality but sometimes (esp in
C++) are too complex

PC AOP 07/18/03

What is AOP?

At the design level, an Aspect is a concern that
crosscuts class and components hierarchies

At the programming level an Aspect is a construct
that allow to modularize a crosscutting concern

The most popular AOP language is Xerox PARC’s
aspectJ (www.aspectj.org), which has spawned

aspectC++ (www.aspectC.org)
aspectC (www.cs.ubc.ca/labs/spl/projects/aspectc.html)

http://www.aspectj.org/

PC AOP 07/18/03

Figure Editor

operations that
move elements

factory methods
Display

*

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Figure

makePoint(..)
makeLine(..)

FigureElement

moveBy(int, int)

PC AOP 07/18/03

Update Aspect crosscut classes

aspect modularity cuts across class
modularity

DisplayUpdating

Display

*

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Figure

makePoint(..)
makeLine(..)

FigureElement

moveBy(int, int)

PC AOP 07/18/03

An Aspect in aspectJ

aspect DisplayUpdating {
pointcut move(FigureElement figElt):
target(figElt) &&
(call(void FigureElement.moveBy(int, int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)));

after(FigureElement fe): move(fe) {
Display.update(fe);

}
}

PC AOP 07/18/03

aspectJ Join Points Designators

when a particular method body executes
execution(void Point.setX(int))

when a method is called
call(void Point.setX(int))

when an exception handler executes
handler(ArrayOutOfBoundsException)

when the object currently executing is of type SomeType
this(SomeType)

when the target object is of type SomeType
target(SomeType)

when the executing code belongs to class MyClass
within(MyClass)

in the control flow of a call to Test's main() method
cflow(void Test.main())

Logical operations, WildCarding and Composition available:
within(*) && execution(*.new(..))
execution(public !static * *(..))
cflow(fooPCut() && barPCut())

PC AOP 07/18/03

aspectJ advices

before advice
Runs before entering the join point

before(FigureElement fe) : move(fe)
{ System.out.println("About to move figure “ + fe); }

after advice
Runs on the way back out

after(FigureElement fe): move(fe) { Display.update(fe); }
“after returning” advice (gives access to the return value)
“after exception” advice (gives access to the exception)

around advice
Runs instead of the join point. The original join point action
can be invoked via the proceed call.

• check pre-/post-conditions, update cache, resource cleanup…

PC AOP 07/18/03

Introductions

An introduction is an aspect member that allows to
add methods to an existing class
add fields to an existing class
extend an existing class with another
implement an interface in an existing class
convert checked exceptions into unchecked exceptions

aspect CloneablePoint {
declare parents: Point implements Cloneable;
declare soft: CloneNotSupportedException:

execution(Object clone());
Object Point.clone() { return super.clone(); }

}

PC AOP 07/18/03

Lightweight Approaches

Some interesting work in C++ using
metaprogramming

Alexandrescu, Vollmann
http://www.vollmann.ch/en/pubs/aosd-ws02-paper.html

But we are talking about Java, where everything
happens at run-time in an Interceptor

Dynamic Proxies
Dynamic insertion of Aspects (Bytecode editing)

PC AOP 07/18/03

Interceptor Pattern

Allows services to be added
transparently to a framework and
triggered automatically when
certain events occur.

In practice Interceptors are objects
that are called before/after a
method call to another object.

In AOP parlance they implement
an advice

PC AOP 07/18/03

Dynamic Proxies as Interceptors

A Java Proxy is an instance of a class
created at runtime, that can serve
as a proxy for one or more
interfaces.

Proxy.newProxyInstance is a factory
method that creates an object that
behaves like the desired interface
(Foo below) but gives instead
control to an InvocationHandler
(the Interceptor)

Foo f = (Foo)
Proxy.newProxyInstance(Foo.class.getClassLoader(),
new Class[] { Foo.class }, invocationHandler);

PC AOP 07/18/03

Dynamic Proxies as Interceptors

The InvocationHandler is the equivalent of an AOP around
advice.

Unfortunately it relies on reflection to invoke the methods of the
proxied interface. Slow even by java standards!

public Object invoke(Object obj, Method method, Object[] parms)
throws Throwable {

logCall(method, parms); //log call to println
Object result = method.invoke(proxiedObject, parms);
return result;

}

PC AOP 07/18/03

Interceptors a la JBoss
public class TracingInterceptor implements Interceptor {

public String getName() { return “TracingInterceptor”; }
public InvocationResponse invoke(Invocation invocation)throws Throwable {

String message = null;
if (invocation.getType() == InvocationType.METHOD) {

Method method = MethodInvocation.getMethod(invocation);
message = “method:” + method.getName();

} else if (invocation.getType() == InvocationType.CONSTRUCTOR) {
Constructor c = ConstructorInvocation.getConstructor(invocation);
message = “constructor:” + c.toString();

} else if (invocation.getType() == InvocationType.FIELD) {
return invocation.invokeNext(); // Do nothing for fields. Too verbose.

}
System.out.println(“Entering “ + message);
// Continue on. Invoke the real method or constructor.
InvocationResponse rsp = invocation.invokeNext();
System.out.println(Leaving + message);
return rsp;

}
}

PC AOP 07/18/03

Attaching an Interceptor

<aop>
<interceptor-pointcut class="POJO">

<interceptors>
<interceptor class="TracingInterceptor" />

</interceptors>
</interceptor-pointcut>

</aop>

Surprisingly JBoss uses XML to aspectify the code.
Of course can use regexps to define pointcuts
Besides class pointcuts, one can define method pcs, constructor pcs,
field and caller pcs. Pcs can be stacked (composed), the works…

How does it work really?

PC AOP 07/18/03

The Dirty Little Secret…

JBoss AOP does bytecode manipulation to attach
interceptors.

Because there is no compilation step, the AOP
runtime must have total control of the
ClassLoader.

This is clever, perhaps too clever?
Can you use jdb (or your favourite IDE) to debug the AOP-
ized code? Apparently yes
Can you integrate this bytecode with non-JBoss libraries?

• May be a problem to add AOP-ized beans to an EJB container
• It is a problem with other fwk manipulating bytecode (JDO)

PC AOP 07/18/03

Special Effects

<aop>
<introduction-pointcut class="POJO">
<mixin>
<interfaces>Tracing</interfaces>

<class>TracingMixin</class>
<construction>

newTracingMixin(this)
</construction>

</mixin>
</introduction-pointcut>

</aop>

POJO Mixin

Interface

Introduction

Pointcut above “introduces” into class POJO
TracingMixin that implements interface Tracing.

This is evil.

PC AOP 07/18/03

Dulcis in Fundo: Metadata

<aop>
<class-metadata group="tracing" class="POJO">

<method name="(get.*)|(set.*)"> <filter>true</filter> </method>
<method name="main"> <filter>true</filter> </method>

</class-metadata>
</aop>

This allows to send down metadata to a pointcut.
So that in the Interceptor invoke method
String filter = (String)invocation.getMetaData(tracing, filter);
if (filter != null && filter.equals(true))

return invocation.invokeNext();

Not impressed? You should be!

PC AOP 07/18/03

Declarative Programming

Metadata allow to configure pointcut behaviour
Think about job configuration at the class or method level

Edit one line of XML to define strategies for
Threading
Security
Transaction
Whatever you support

Allows to transparently annotate existing code so
that your framework (or code generator…) can
manipulate it

No need of expensive IDE generating EJB mumbo-jumbo
JBoss (and now Java) copied all this from .Net

M$ the Innovator? Where is my wallet?

}

	Lightweight AOP in Java
	One Interface Many Implementations
	What is AOP?
	Figure Editor
	Update Aspect crosscut classes
	An Aspect in aspectJ
	aspectJ Join Points Designators
	aspectJ advices
	Introductions
	Lightweight Approaches
	Interceptor Pattern
	Dynamic Proxies as Interceptors
	Dynamic Proxies as Interceptors
	Interceptors a la JBoss
	Attaching an Interceptor
	The Dirty Little Secret…
	Special Effects
	Dulcis in Fundo: Metadata
	Declarative Programming

