
 Wim Lavrijsen, LBNL 1 PyROOT, LBNL October 2003

PyROOT

Reference Talk
LBNL, October 2003

Wim Lavrijsen, LBNL

 Wim Lavrijsen, LBNL 2 PyROOT, LBNL October 2003

Outline
History and context

User-level overview

Design and implementation

ROOT dictionary

PyROOT.so / ROOT.py

boost.python plumbing

Resources

 Wim Lavrijsen, LBNL 3 PyROOT, LBNL October 2003

History
PyROOT saw light as 'RootPython'

Developed by Pere Mato

Resides in the Gaudi repository

PyROOT inherited ideas, but all code rewritten:

New boost.python v2 API

Closer in style to Python

More generic towards ROOT

Part of SEAL scripting

 Wim Lavrijsen, LBNL 4 PyROOT, LBNL October 2003

SEAL
Shared Environment for Applications at LHC

Provide LHC common core and services libraries

Foundation class libraries (system, utility, etc. libs)

Framework services (includes scripting)

Improve coherency of LCG apps

Strategy of pluggable components

One such component is PyROOT

 Wim Lavrijsen, LBNL 5 PyROOT, LBNL October 2003

Motivation
ROOT is a popular product in HEP

Many projects use ROOT (eg. file formats)

Python is a very effective “glue language”

Enable access to ROOT from non-ROOT applications

C++ is considered complex and difficult to learn

Use the Python interpreter instead of CINT

 Wim Lavrijsen, LBNL 6 PyROOT, LBNL October 2003

Symmetry
Access ROOT objects from Python

Reflection through CINT dictionary

Interpretation / execution by CINT interpreter

Access Python objects from ROOT

CINT dictionary for Python

Interpretation / execution by python interpreter

 Wim Lavrijsen, LBNL 7 PyROOT, LBNL October 2003

Simple Example
>>> from ROOT import gRandom, TCanvas, TH2F

>>> c1 = TCanvas('c1','Example',200,10,700,500)

>>> hpxpy = TH2F('hpxpy','py vs px',40,-4,4,40,-4,4)

>>> for i in xrange(25000):

... px,py = gRandom.Gaus(),gRandom.Gaus()

... hpxpy.Fill(px,py)

...

>>> hpxpy.draw()

>>> c1.Update()

 Wim Lavrijsen, LBNL 8 PyROOT, LBNL October 2003

PyROOT

Conceptual Architecture - 1
Python interpreter

Unknown identifier

ROOT
libraries

ROOT class? TClass

PyClass
 __class__ = PyClass_New(TClass::GetName())

 for all TMethods from TClass :
 name = TMethod::GetName()
 doc = TMethod::GetSignature()
 pyMethod = boost::python::function_object(
 MethodDispatcher(TMethod*))
 pyMethod.__dict__['__doc__'] = doc

 __class__.__dict__[name] = pyMethod

 return __class__CINT

 Wim Lavrijsen, LBNL 9 PyROOT, LBNL October 2003

PyROOT

Conceptual Architecture - 2
Python interpreter

ROOT
libraries

 python = GetInterpreter()

 python.execute(“python code string”)

CINT

TPython

Run string

 Wim Lavrijsen, LBNL 10 PyROOT, LBNL October 2003

ROOT Features
ROOT basically uses only ROOT classes

Most have an associated TClass

Almost all derive from TObject

Practically every class name starts with 'T'

Simple C++ (no cov. return, templates, fct hiding, etc.)

Extensive reflection information

CINT dictionary

Includes signatures, scopes, default arguments, etc.

 Wim Lavrijsen, LBNL 11 PyROOT, LBNL October 2003

boost.python
Performs C++ to Python C-API mapping

Takes care of C++ overloading

C++ classes for basic Python types

No run-time support for default arguments

Handled by PyROOT (or by CINT, for older releases)

 Wim Lavrijsen, LBNL 12 PyROOT, LBNL October 2003

Example in detail ...
>>> from ROOT import TCanvas

[import ROOT.py, attempts to retrieve TCanvas]

>>> c1 = TCanvas('c1','Example',200,10,700,500)

[object construction in both Python and ROOT]

>>> c1.Update()

[member call into ROOT from Python]

 Wim Lavrijsen, LBNL 13 PyROOT, LBNL October 2003

ROOT.py
Loads PyROOT.so module

Installs exception hook to capture name errors

Names starting with 'T' are looked up by ROOT

Instantiated in the proper namespace, if correctable

Statement is re-executed in the same code frame

Transparent to the end-user

Fires up a thread to feed system events to ROOT

 Wim Lavrijsen, LBNL 14 PyROOT, LBNL October 2003

ConstructorDispatcher
Python ROOT

TCanvas.__init__(*args) TMethodCall(TClass*, args)
Translate args

Wrap result (ObjectHolder)

c1 = TCanvas('c1', 'Example',

new TObject(arg1, arg2, ...)<ROOT.TCanvas instance at ... >

 Wim Lavrijsen, LBNL 15 PyROOT, LBNL October 2003

MethodDispatcher
Python ROOT

TCanvas.Update(c1) TMethodCall(TObject*)
Extract ObjectHolder

Wrap result if necessary

c1.Update()

TCanvas_object->Update()None
PyObject or ObjectHolder

 Wim Lavrijsen, LBNL 16 PyROOT, LBNL October 2003

PyROOT Resources
First released with SEAL 0.2.0 (April 7, 2003)

All basics (histos, ntuples, files, graphics, etc.) work

Still some wrinkles to iron out ...

Documentation:
http://cern.ch/seal/snapshot/devguide/PyROOT-howto.html

http://cern.ch/wlav/scripting/scripting.html#PyROOT

Examples provided with PyROOT installation

 Wim Lavrijsen, LBNL 17 PyROOT, LBNL October 2003

Other Resources
Python, boost.python bindings

http://www.python.org

http://www.boost.org/libs/python/doc

ROOT

http://root.cern.ch

SEAL project portal

http://cern.ch/seal

